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Abstract-A new perturbation method is developed for the problems of solidification of liquid in a plane 
coordinate system. The method consists of (1) immobilizing the moving boundary by Landau’s 
transformation, (2) replacing the time variable by the moving interface X,(T), (3) applying the regular 
parameter perturbation technique. A quasi-steady state solution is shown to be the zero-order approxi- 
mation. The perturbation solution for the planar solidification of a saturated liquid with constant wall 
temperature is shown to be identical with the exact solution. Comparison of the ~~urbation solutions 
for the solidification of a flowing warm liquid on a cooled Rat plate with the experimental result of 

Siege1 and Savino [S] is also given. 

NOMENCLATURE 

a, 

Bi, 

CP, 

thickness of wall on which frozen layer is 
forming; 
Biot number, h, X,/k; 
specific heat at constant pressure of frozen 
layer; 

F,, Fz, formulas, defined by equation (34); 
h C, 

h 0, 

h 1, 

k, 

k w* 

L, 
T 
T,, 

?i? 
T,, 
t, 
u, 

X, 

Xc 
Xs, 

X, 
X&b 

convective heat-transfer coefficient between 
coolant and wall; 
overall convective heat-transfer coefficient, 
equation (23); 
convective heat-transfer coefficient between 
frozen layer and liquid; 
thermal conductivity of frozen layer; 
thermal conductivity of wall on which 
frozen layer is forming; 
latent heat of fusion of freezing material; 
temperature distribution in frozen layer; 
temperature of coolant; 
freezing temperature; 
temperature of flowing liquid; 
time; 
dimensionless temperature, 

(Ts- V/(T/- T,); 
coefficient of ci in the asymptotic expansion 
of u; 
position coordinate in frozen layer measured 
from wall; 
thickness of frozen layer; 
thickness of frozen layer at steady state, 
equation (24), or characteristic length, 
equation (2); 
dimensionless position coordinate, X/X,; 
dimensionless thickness of frozen layer, 
x,/x,. 

Greek symbols 

6, normalized distance; 
E, Stefan number, c,( T, - T,)/L; 
a, growth constant, equation (5); 

density of frozen layer; 
Fourier number, dimensionless time, 

k~/~c~X~); 
coefficient of~~ in the asymptotic expansion 
of EZ. 

INTRODUCTION 

BANKOFF [l, 21 reviewed various analytical and ap 
proximation methods for the diffusion-controlled 
moving boundary problems. Muehlbauer and Sunder- 
land [3] also reviewed heat conduction with freezing 
or melting. Since then, new results have been obtained 
by many investigators. Tao [4,5] obtained the numeri- 
cal solutions of freezing saturated liquid in cylinders 
and spheres by a finite difference method. Numerical 
methods have been used by Lock et ai. [6] and Cho 
and Sunderland [7] by first using Landau transform- 
ation [l] to immobilize the boundary. The analytical 
iterative solutions for the freezing in plane coordinate 
systems obtained by Savino and Siegel [Is, 93 have been 
extended to cylindrical and spherical coordinate 
systems by Shih and Tsay [lo], Shih and Chou [II], 
and Theofanous and Lim [ 121. 

Application of perturbation methods to diffusion- 
controlled moving boundary problems needs special 
attention. Duda and Vrentas [13,14] compared the 
exact solution of the growth of a plane surface of vapor 
into an infinite liquid phase of binary system with a 
perturbation solution and found that the zero-order 
approximate solution is the quasi-stationary solution. 
They also discussed the importance and usefulness of 
the perturbation method. Pedroso and Domoto 
[E-17] encountered di~culty in the appli~tion of a 
perturbation method to inward spherical solidification. 
Lock [18] and Jiji [19] applied perturbation methods 
to freezing on a flat plane and outside a cylinder, 
respectively. 

In this report, a new perturbation method is de- 
veloped and is tested for the flat-plate freezing problem. 
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This new method consists of three major steps: (a) 
applying Landau’s transformation [l] to immobilize 
the moving boundary, (b) changing the time variable 

from T to x~(T), which is the position of the moving 
interface, and (c) using the regular parameter pertur- 
bation method [20,21]. The first two steps are the 
key points of the new method. 

First, the freezing of liquid on a flat plate with con- 

stant wall temperature is analyzed. This problem has 
an exact solution. The perturbation solution is shown 
to be identical with the exact solution. A perturbation 
method is then applied to the freezing of liquid on a 

flat plate with convective boundary conditions. This 
problem does not have an exact solution. Comparison 

of the perturbation solution with the experimental 
result of Siegel and Savino [S] is discussed. Analysis 

of moving boundary problems of cylindrical and 
spherical coordinate systems will be presented in other 

reports. 

FREEZING ON A FLAT PLATE WITH CONSTANT 
WALL TEMPERATURE 

The system 
Assuming constant physical properties of solid and 

negligible volume change the solidification of a liquid 
initially at the freezing temperature Tf can be described 
by the following equations for the plane coordinate 

system : 
3T k S2T 
_=-_ 
at pc, ax2 

0 d x d Xf(f) (la) 

T(0, t) = T, 

T[X,(t), tl = T, 

(lb) 

(14 

,L!!$kdr 
ax x=x, 

(14 

X,(O) = 0. (14 
Here the wall temperature is assumed to be constant 
at To. Defining the following dimensionless variables 
by the introduction of a reference distance ,Y,, 

T,-T 
LJ----- 

Tf - T, 

kt 
t=y 

PC,& 

E = 
c,(T,-- 7’0) 

L 

equations (la-e) become: 

au d2U _=- 
(37 3x2 

0 < x ,< Xf(7) (34 

U(O.7) = 1 

(I[XfW, t] = 0 

(W 

(3c) 

dxr- au 
dr 

- -Ey 

cx X=X,(T) 
(34 

x,(O) = 0. (34 = 27(& - +&’ + &e3 -&E~ + . . .). (13) 

Exact solution 
An exact solution is available for the system of 

equations (3a-e) [22] : 

U(x. 7) = 1 -erf(x/2Jr)/erf(/,) (4) 

with 

(Jrr)n exp(A2)erf(1) = E (5) 

and 

X/(Z) = 21 Jr. (6) 

Expanding the function exp@‘)erf(JJ in terms of 3.. 
equation (5) becomes [23] : 

22 
E = 2(1.2+&4+- 

23 

1.3.5 
16 + ------A*+.... 

1.3.5.7 
(7) 

Reversion of the power series of 1 of equation (7) into 

the power series of E gives [24] : 

212 = E-+3E2f&E3-&E4$.... (8) 

Letting 

b=+ f 

equation (4) becomes [23] : 

erf(lb) 
U(6,7) = 1 - __ 

erf (1) 

1s (W3 / WI5 m7 I 
3.1! 5.2! 7.3! ’ 

=l-- 
&1.3+X_L+... 

(9) 

3.1! 5.2! 7.3! 

or 

U(S,t)= l-a+~(a3-a)- $9S”-1063+d) 

+$$4587-6365+763+lld)-.... (10) 

The expression of U(6,7) in the power series of E can 
be obtained by the substitution of equation (8) into 
equation (10): 

U(6,z) = 

Substitution of equation (11) into equations (3de), the 

solution of 7(xJ) is 

ET = 70+&7,+&27z+E373+... (12) 
where 

70 = x:/2 

71 = 113. x:/2 

r2 = - 2145. x;/2 

r3 = - 1421945. XT/~. 

Inversion of equation (12) gives X:(T) as a power 
series of F: 

x37)= 212.25 



Perturbation solutions of moving-boundary problems 

Equations (11) and (12) are the exact solution which 
will be compared with the perturbation solution ob- 
tained in the next section, represented by a power 
series of the parameter E. 
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The expressions of the first four terms, Ui(6,xJ), 
i = 0, 1,2,3, are obtained from equations (16-20): 

u&5, XJ) = l-6 

Ui(6, x,) = 6(S3-@ 

Perturbation solution 
In equations (3a-e) the independent variables of U 

are z and x, U = U(x, 7). Changing the position co- 
ordinate x to 6 gives U = U(S, T). This is known as 
Landau’s transformation. Landau’s transformation 
makes the nonlinearity due to moving interface explicit. 
Furthermore, changing the time variable r to x/(r), 
gives U = U(6, x/). The latter transformation is poss- 
ible when x/ is a monotonic function of z. Many 
practical applications belong to this case. 

In the case that U = U(6,xf), equations (3a-e) 
become 

dr x/ 
dx,=-au 

&as a=t 

T(X/) = 0, at xy = 0. 

(144 

UW 
(14c) 

(14d) 

(14e) 

The technique of regular parameter perturbation is 
then used to analyze equations (14a-e). Asymptotic 
expansion of U(d,x,) into the power series of the 
parameter E yields 

U(k X/l = u&5 x,) +eU1(6, Xf) 
+&2u2(6,x/)+.... (15) 

Substituting equation (15) into equation (14a) and 
equating the coefficients of equal powers of E yield 

(17) 

(18) 

Substitution of equation (15) into equations (14b) and 
(14~) gives, respectively, the boundary conditions for 
ui(s3 XJ) 

U,(O, X/) = 1 

tii(O, xr) = 0, i = 1,2,. . (20) 
U,(l, xr) = 0, i = 0, 1,2,. . 

U,@,x,) = -g-;+g 

u3(6,x,) = g+g+&gj. 

(21) 

The zero-order solution U&3, xf) = l-6 is the 

quasi-steady state solution, which can be obtained by 
neglecting the time derivative of equation (3a). The 
quasi-steady state solution is also known as the pseudo- 
steady state solution. When E is sufficiently small, 
higher order terms can be neglected. This gives a formal 
proof of the quasi-steady state solution. Notice that 
Duda and Vrentas [13] found that the zero-order 
solution is the quasi-stationary solution of a class of 
diffusion-controlled bubble growth problems. 

The perturbation solution of the temperature profile 
of equations (15) and (21) is identical with the exact 
solution given by equation (11). The perturbation solu- 
tion of the moving interface obtained from equations 
(14d-e) as well as equations (15) and (21) is also 
identical with the exact solution given by equation (12). 

SOLIDIFICATION OF A FLOWING WARM LIQUID ON 
COOLED FLAT PLATE 

The system 
The solidification of a warm liquid flowing over a 

flat plate which is cooled below was studied experi- 
mentally and analytically by Siegel and Savino [8]. 
This problem is studied here by the use of the pertur- 
bation method. Referring to Fig. 1 and neglecting the 

Flowmg ltqwd with constant h, and 7; 

Flowmg coolant wth constant h, and T, 

FIG. 1. Freezing of liquid flowing over a chilled flat plate. 

heat capacity of the chilled wall, the problem can be 
described as follows: 

aT k a2T 

dt pep dX2 T 
0 Q x G X,(f) 

kdr 
ax ,y=o 

= h,[VA t) - T,] 

(224 

(22’4 

(224 
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Here k,, is the overall convective heat-transfer co- 
efficient from the coolant to the chilled wall at X = 0: 

1 1 = ~~+“. 
i, h, !iM, 

(23) 

The thickness of the frozen layer approaches a steady- 

state value, X,, which can be obtained by heat 

balance [S] : 

x, = k(T,-T,)/h,(T, -To)-k(a/k,+Ijh,). (24) 

Defining dimensionless variables and parameters by 

equations (2) and Biot number, Bi, as 

Bi = /1,X,/k. (25) 

Equations (22a-e) become : 

au PC 
?7 ?x2 

, 0 Q x d Xf(7) (264 

au - ? = Bi[ U(O,7) - l] (26b) 
cx x = 0 

U(x,, 7) = 0 (26~) 

.Uf(O) = 0. (264 

Transformation of independent variables 

No exact solution exists for this system. Define 
6 = x/x~(z). To facilitate the perturbation approach. 

the independent variables 7 and x are changed to x/(r) 
and S, respectively. Hence U = U [S, sJ7)] and equa- 
tions (26a-e) become: 

au 
s a=0 

= BixJCJ(0, xs) - 11 (27b) 

U(l.x,) = 0 (27~) 

7(xf) = 0, 

Perturbation solution 

at .YJ = 0. (27e) 

The asymptotic expansion of U(6, xf) in the power 
series of E is given by equation (15). The first three 
terms of temperature distribution as in the following 

are obtained by substituting equation (15) into equation 
(27a) and by equating the coefficients of the same 
powers of E 

tnd Y.-P. SHIH 

The boundary conditions needed for the linear equa- 

tions of (28) (29), and (30) are obtained from equations 
(15), (27b) and (27~): 

iuol 

r76 
= Bix,[U,(O, x,) - I] 

*=fl 

a, 
?S 

= Bix/ U,(O, xf) 
b=O 

CWZ 

dfi SC0 
= BixJ U, (0, x/) 

(31) 

U,(LXf) = 0 
U,(l,Xf) = 0 

Uz(l, Xf) = 0. 

The solutions of Uio(6,xs), U,@,x,) and Uiz(6,x,) 
from equations (28-30) are: 

Uo(fi, Xf) = I+Biy 
Bixf (l-6) 

/ 

u, (6, Xf) = 
Bi3x;( 1 - xf) 

6(1 +Bi)(l +Bixf)4 

x [(I +Bixs)(3+Bix,6)6’ 

-(3+BixJ)(1+Bix~6)] (33) 

U,@, Xf) = 

Bi4x:( 1 --x,) 

360( 1 + Bi)*( 1 + Rx,); 

x {(l +Bixf)[10(3+Bixf6)6’F2 

+3(5+Bi~,S)6~]F~-(l+Bix~6) 

+[3(5+Bixf)FI -10(3+Bix,)F,]}(34) 

where 

F, = Bix,(l +Bix,)(l+3Bi-2Bix,) 

F2 = 6(1+2Bi)-3(1 -Bi)Bix,+(l +Bi)Bi’x+. 

Notice that U0(6, xr) of equation (32) is the quasi- 
steady state solution, which can be obtained from 
equations (26a-c) by neglecting the time derivative of 

equation (26a). 

Position ofmouing interfhce 
The position of the moving interface is calculated 

from equations (27d), (27e) and (25). 

dr “I 
sG=-Bix/ JI 

_+ 1 aiui 
l+Bi i=O % 6=, 

(35) 

Integration of equation (35) from 0 to xI yields 

i 

Xf 
.57= - Xf dXf 

t fsiD;. Bixf 
(36) 

,, l+Bi ;zO 36 a=, 

Letting 

87 = 7,+E7,+E27*+.... 

Equations (32-34) and (36) give 

-x/) 
I 

(37) 
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-1-Bi x/ 3f3Bi+ Bi2 

” =--- 3Bi “+(l+Bi)(l+Bix,)+ (l+Bi)’ 

Tz = 
X’x:[lO(l +Bi)(3+ 3Bix/+ Bi’x$’ -H] s 90(1-~~)(l+Bix~)~ dx, (39) 
0 

where 

H = 3(5+5Bix,+ Bi’xj)F, +5(3+3Bix,+ Bi2x@‘2. 

Here F1 and F, are given in equation (34). 
Notice that st = r. is the quasi-steady state solution. 

Table 1 gives the values of 20, z1 and 22 for different 
Biot number. 

Table 1. r,,, zt and r2 for planar solidification with a 
warm liquid flowing over a chilled flat plate 

XI 

040 OGOOO 
0.05 5.6565 
0.10 11.649 
0.15 18.015 
0.20 24.800 
0.25 32.060 
0.30 39.858 
0.35 48.275 
0.40 57.410 
0.45 67.388 
0.50 78.371 
0.55 90.569 
0.60 104.27 
0.65 119.80 
0.70 137.98 
0.75 159.49 
0.80 185.94 
0.85 220.20 
0.90 268.71 
0.95 352.03 

Bi = 0.1 

OGOO 
0.01418 
0.05857 
0.1363 
0.2512 
0.4076 
0.6110 
0.8679 
1.1865 
1.5772 
2.0534 
2.6324 
3.3382 
4.2039 
5.2786 
6.6378 
84085 

10.829 
14.432 
20.923 

00000 
-4.051 x 1o-6 
-3.146 x 10-s 
- 1.029 x 1O-4 
-2.361 x lo-‘+ 
-4.453 x 10-d 
- 7.409 x 10-4 
-0.001128 
-0.001610 
-0.002178 
-0.002819 
- 0003506 
-0GO4197 
- 0004823 
- 0005277 
- 0005382 
-0QO4833 
- 0.003047 

oQO1304 
0.01248 

Table 1. (Continued) 

090 04000 
0.05 0.3116 
0.10 0.6482 
0.15 1.0127 
0.20 1.4083 
0.25 1.8391 
0.30 2.3101 
0.35 2.8270 
040 3.3974 
0.45 4.0305 
0.50 4.7383 
0.55 5.537 
0.60 6447 
0.65 7.498 
0.70 8.736 
0.75 10.227 
0.80 12.085 
0.85 14.524 
0.90 18.023 
0.95 24.112 

OGO OGOOO 
0.05 0.1052 
0.10 0.2214 
0.15 0.3501 
0.20 0.4926 
0.25 0.6507 
0.30 0.8267 
0.35 1.0231 
0.40 1.2433 
0.45 1.4913 
0.50 1.7726 
0.55 2.0940 
0.60 2.4652 
0.65 2.8993 
0.70 3.4159 
0.75 4.0452 
0.80 4.8378 
0.85 5.8885 
0.90 7.4103 
0.95 10.083 

Bi = 0.5 

00000 
0003816 
0.01557 
0.03579 
0+%515 
0.1045 
0.1548 
0.2175 
0.294 1 
0.3868 
0.4983 
0.6322 
0.7935 
0.989 1 
1.2293 
1.5299 
1.9177 
24426 
3.2169 
4.5995 

Bi = 1.0 

OGOOO 
ONI 
0~01007 
0.02283 
oG4106 
oG6510 
0.09547 
0.1328 
0.1780 
0.232 1 
0.2966 
0.3736 
04657 
0.5767 
0.7123 
0.8812 
1.0932 
1.3910 
1.8215 
2.5880 

6” ____ Measured steady- state value 

[a 
50 - Second order perturbation 

F 

o Experimental results 

[al 

E= 0.234 

Bi= 1.34 

Time from start of ice growth. t, s 

FIG. 2. Comparison of experimental result [S] with second-order perturbation 
solution. 

09000 
-1.909x10-5 
- 1.400 x 10-a 
-4.335 x 10-4 
-9.422 x 1O-4 
-0.001685 
- 0.002663 
- 0.003859 
- 0.005237 
- 0006746 
-0008313 
-0009839 
-0.01119 
-0.01218 
-0.01253 
-0.01185 
- 0009447 
-0.004044 

0.007185 
0.03325 

OOCOO 
- 3.554 x 10-s 
-2441 x 10-d 
-7.112 x 1O-4 
-0QO1461 
- 0002482 
- 0003737 
-0005175 
- 0036730 
- OGO8324 
- 0.009866 
- 0.01124 
-0.01230 
-0.01287 
-0.01267 
-0.01129 
- 0008088 
-0001812 

0.01027 
0.03692 
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0 200 400 600 600 

Normalued freezlng time. T 

FIG. 3. Convergence of perturbation solution, Bi = 0.1. 
O---t = T,/.s; I-T = (T~+ET~)/E: 2--t = (T,+ET~ +.?T~)/E. 

0.0 
0 IO 20 30 40 

Normalized freezlng ttme, r 

FIG. 4. Convergence of perturbation solution, Bi = 0.5. 
0-m-T = t,,/&: 1-T = (T,+ETl)/C;2--5 =(7~+&7~+C2T~)/E. 

Normalized freezlng time, T 

FIG. 5. Convergence of perturbation solution. Bi = 1.0. 
0- r = To/&; 1 -T = (7,,+&71)/&;2--T =(T~+&Tl+E2T~)/E. 

Comparison of the perturbation solution with the 

experimental results of Siegel and Savino [S] is illus- 
trated in Fig. 2. Since I: = 0.234 is rather small, good 
agreement is expected. Figures 335 show the con- 

vergence of the perturbation solution. For the values 
of the Biot number used the zero-order approximation 
is good for c < 0.1 and first-order approximation is 

good for R < 1. Better convergence is obtained for 

small Biot number. 

DISCUSSION AND CONCLUSIONS 

Perturbation solutions are obtained for moving- 

boundary problems with plane coordinate. Two special 

transformations of the independent variables are used. 
The first transformation is Landau’s transformation to 
immobilize the boundary condition. Then the time 

variable t is replaced by the moving interface x~(T), 
provided X/(Z) is a monotonic function of 5. A regular 
parameter perturbation technique is used in a straight- 
forward manner. For freezing of a saturated liquid on 
a wall of constant temperature. the exact solution is 
identical with the perturbation solution. 

This report also formally proves that the quasi-steady 

state solution is the zero-order approximate solution 

for the problems considered. 
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