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Abstract—A new perturbation method is developed for the problems of solidification of liquid in a plane
coordinate system. The method consists of (1) immobilizing the moving boundary by Landau’s
transformation, (2) replacing the time variable by the moving interface x(r), (3) applying the regular
parameter perturbation technique. A quasi-steady state solution is shown to be the zero-order approxi-
mation. The perturbation solution for the planar solidification of a saturated liquid with constant wall
temperature is shown to be identical with the exact solution. Comparison of the perturbation solutions
for the solidification of a flowing warm liquid on a cooled flat plate with the experimental result of
Siegel and Savino {8] is also given.

NOMENCLATURE

a, thickness of wall on which frozen layer is
forming;

Bi, Biot number, hy X, /k;

¢y, specific heat at constant pressure of frozen
layer;

F\, F,, formulas, defined by equation (34);

h,, convective heat-transfer coefficient between
coolant and wall;

hg, overall convective heat-transfer coefficient,
equation (23);

hy, convective heat-transfer coefficient between
frozen layer and liquid;

k, thermal conductivity of frozen layer;

k.,  thermal conductivity of wall on which
frozen layer is forming;

L, latent heat of fusion of freezing material;

T, temperature distribution in frozen layer;

Ty,  temperature of coolant;

T;, freezing temperature;

T;, temperature of flowing liquid;

t, time;

U, dimensionless temperature,
(Ty=T(T;—Ty);

U;, coefficient of ¢ in the asymptotic expansion
of U,

X, position coordinate in frozen layer measured
from wall;

X, thickness of frozen layer;

X,  thickness of frozen layer at steady state,
equation (24), or characteristic length,
equation (2);

X, dimensionless position coordinate, X/X,;

x,(t), dimensionless thickness of frozen layer,
X,/X,.

Greek symbolk

. normalized distance;

&, Stefan number, ¢, (T, — T,)/L;

A, growth constant, equation (5);

2, density of frozen layer;
1, Fourier number, dimensionless time,
kt/lpe, X2);
T, coefficient of & in the asymptotic expansion
of et.
INTRODUCTION

BANKOFF [1,2] reviewed various analytical and ap-
proximation methods for the diffusion-controlled
moving boundary problems. Muehlbauer and Sunder-
land [3] also reviewed heat conduction with freezing
or melting. Since then, new results have been obtained
by many investigators. Tao [4, 5] obtained the numeri-
cal solutions of freezing saturated liquid in cylinders
and spheres by a finite difference method. Numerical
methods have been used by Lock et al. [6] and Cho
and Sunderland [7] by first using Landau transform-
ation [1] to immobilize the boundary. The analytical
iterative solutions for the freezing in plane coordinate
systems obtained by Savino and Siegel [8, 9] have been
extended to cylindrical and spherical coordinate
systems by Shih and Tsay [10], Shih and Chou [11],
and Theofanous and Lim [12].

Application of perturbation methods to diffusion-
controlled moving boundary problems needs special
attention. Duda and Vrentas [13, 14] compared the
exact solution of the growth of a plane surface of vapor
into an infinite liquid phase of binary system with a
perturbation solution and found that the zero-order
approximate solution is the quasi-stationary solution.
They also discussed the importance and usefulness of
the perturbation method. Pedroso and Domoto
[15-17] encountered difficulty in the application of a
perturbation method to inward spherical solidification.
Lock [18] and Jiji [19] applied perturbation methods
to freezing on a flat plane and outside a cylinder,
respectively.

In this report, a new perturbation method is de-
veloped and is tested for the flat-plate freezing problem.
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This new method consists of three major steps: (a)
applying Landau’s transformation [1] to immobilize
the moving boundary, (b) changing the time variable
from 7 to x,(r), which is the position of the moving
interface, and (c) using the regular parameter pertur-
bation method [20,21]. The first two steps are the
key points of the new method.

First, the freezing of liquid on a flat plate with con-
stant wall temperature is analyzed. This problem has
an exact solution. The perturbation solution is shown
to be identical with the exact solution. A perturbation
method is then applied to the freezing of liquid on a
flat plate with convective boundary conditions. This
problem does not have an exact solution. Comparison
of the perturbation solution with the experimental
result of Siegel and Savino [8] is discussed. Analysis
of moving boundary problems of cylindrical and
spherical coordinate systems will be presented in other
reports.

FREEZING ON A FLAT PLATE WITH CONSTANT
WALL TEMPERATURE
The system

Assuming constant physical properties of solid and
negligible volume change the solidification of a liquid
initially at the freezing temperature T, can be described
by the following equations for the plane coordinate
system:

6T~k82T 0< X <X/t 1
ot ~pcpé‘X2’ SX<X0 (1a)
TO,0) =T, (1b)
T[X, ()] = T, (1c)
dX T
hale? kf}, (1d)
dr 0X |x=x,
X (0)=0. (le)

Here the wall temperature is assumed to be constant
at Ty. Defining the following dimensionless variables
by the introduction of a reference distance X,

T,~T
U=
T,—-T,
ke
a pc, X,
X
X == 2
=Y 2
Xy
’Cf(T) Z
— cp(’Tf_ 7;))
L
equations (la—e) become:
ou é*U 0 x< ) 3
ot ox?¥ Sxs<xb (32)
U@, 7)=1 (3b)
Ulxp(t), 1] =0 (3¢)
d U
e (3d)
dt OX [x=x,0)

x/(0)=0. (3¢)

Exact solution
An exact solution is available for the system of
equations (3a—e) [22]:

Ulx, 1) = 1 —erf(x/2/t)/erf(2) 4

with
(Vm)Aexp(A?)erf(d) = ¢ (5)

and
xp(t) = 24 /7. (6)

Expanding the function exp(1?)erf(4) in terms of 2,
equation (5) becomes [23]:
2 22 23
=224+ A+ A8
e= A s T 35
Reversion of the power series of A of equation (7) into
the power series of ¢ gives [24]:

Bt 0

202 =g —3e? + 58 — okt 4. (8)
Letting
X
5=
xg(1)
equation (4) becomes [23]:
erf(49)
U@,1)=1-
©.7) erf(4)
; (10  (10)° (1)
3.1 .21 3
=1~ 3 B 5 ©®
117520 731
or
22 (2/12)

U@,1) = 1=6+ (5~ 8) =3z (95°~105°+9)

@7y

5120 (4557 —638°+75° +118) ~

(10)

The expression of U(4, 1) in the power series of ¢ can
be obtained by the substitution of equation (8) into
equation (10):

: 5 5 195
UG.D) = (1-0)+ 5 (6 —0)+2( — 5 -
0.7) = (1=9)+ ¢ )”( 40 36+360>
EI R A
336 780 T 2160 15120 Y

Substitution of equation (11) into equations (3d—e), the
solution of 7(x) is

eT = To+ et +& T, +E% 13 +... (12)
where

79 = x}/2

T = 1/3.53)2

1, = —2/45.x%/2
T3 = —142/945 .x%/2.
Inversion of equation (12) gives x7(r) as a power
series of ¢:
x3H1) =242t
79 4 )

= 2t(e—4e% + 756° — ok +. (13)
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Equations (11) and (12) are the exact solution which
will be compared with the perturbation solution ob-
tained in the next section, represented by a power
series of the parameter &.

Perturbation solution

In equations (3a—e), the independent variables of U
are 1t and x, U = U(x, 7). Changing the position co-
ordinate x to § gives U = U(8, 7). This is known as
Landau’s transformation. Landau’s transformation
makes the nonlinearity due to moving interface explicit.
Furthermore, changing the time variable © to x (1),
gives U = U(9, x;). The latter transformation is poss-
ible when x; is a monotonic function of . Many
practical applications belong to this case.

In the case that U = U(d,x,), equations (3a-¢)

become

oU ou\ /ou o*U
O——xp— || = =— 14
8( 3 xfax,><aa ,,=1> ez U4
U@©,x,)=1 (14b)
U(l,x;)=0 (14¢)

dT xl
= 14
dx, oU (14d)
© 36 e

(x) =0, at x,=0. (14e)

The technique of regular parameter perturbation is
then used to analyze equations (14a—). Asymptotic
expansion of U(S,x;) into the power series of the
parameter ¢ yields

U, x5) = Uo(6, x,) +eU,(9, x,)
+82U2((S,Xf)+.... (15)

Substituting equation (15) into equation (14a) and

equating the coefficients of equal powers of ¢ yield

92U,
=0 (16)
U, [ 0Uy  dUp\[oU,
MY St SV ) | el
a5° (aa xfax,><aé ,,=1> 17
BU, [.0Uy  8Uy\aU,
PR 6—_xfw__ YE
26 3 T Ex;) 06 |yes
U, U\ /U,
oy, ) (2 1
(s @) o

oU,  aU)\(aU,.
et A 1
00 s (3xf>< 00 §=1 ' ( 9)

Substitution of equation (15) into equations (14b) and
(14c) gives, respectively, the boundary conditions for
U6, x f)

aZUi i—-1
Ll

i=0

UO(O’xf)= 1
Ui(o’xf)z(),i: 1,2,...
Ull,x;)=0,i=0,1,2,....

(20)

The expressions of the first four terms, Ui(d,xy),
i=0,1,2,3, are obtained from equations (16-20):

Uo(é,xl‘) =1-0
U,(8,x;) = §(6*—9)

55 & 195

_ 9 ¥ 1% 21

V2l0:%7) = 26760 " 360 @b

5 5 178 353
Us®x,) = o b O _20
30.%) =335+ 50 T 3160 15120

The zero-order solution Ugy(d,x,)=1~0 is the
quasi-steady state solution, which can be obtained by
neglecting the time derivative of equation (3a). The
quasi-steady state solution is also known as the pseudo-
steady state solution. When ¢ is sufficiently small,
higher order terms can be neglected. This gives a formal
proof of the quasi-steady state solution. Notice that
Duda and Vrentas [13] found that the zero-order
solution is the quasi-stationary solution of a class of
diffusion-controlled bubble growth problems.

The perturbation solution of the temperature profile
of equations (15) and (21) is identical with the exact
solution given by equation (11). The perturbation solu-
tion of the moving interface obtained from equations
(14d—e) as well as equations (15) and (21) is also
identical with the exact solution given by equation (12).

SOLIDIFICATION OF A FLOWING WARM LIQUID ON
COOLED FLAT PLATE

The system

The solidification of a warm liquid flowing over a
flat plate which is cooled below was studied experi-
mentally and analytically by Siegel and Savino [8].
This problem is studied here by the use of the pertur-
bation method. Referring to Fig. 1 and neglecting the

Flowing liquid with constant hand 7"

X=X, (1),
Tlhx,(n]=1,

Flowing coolant with constant A and 7

F1G. 1. Freezing of liquid flowing over a chilled flat plate.

heat capacity of the chilled wall, the problem can be
described as follows:

aT—kazT 0 X < X( 22
ot —pcpﬁXz’ SX < X0 (222)
oT
k— = -
X |yes ho[T(0,1) - T5] (22b)
T[X,(0), ] = T; (22¢)
dx aT
L= =k— —hy(T,—T, 22d
” OX |xmx (Ti—Tp)  (22d)
X,0)=0. (22¢)



692 C.~L. HuaNG and Y.-P. SHiH

Here h, is the overall convective heat-transfer co-
efficient from the coolant to the chilled wall at X = 0:
1 1 u

— =, 23

ho  h ky (23)
The thickness of the frozen layer approaches a steady-
state value, X,, which can be obtained by heat
balance [8]:

X, = k(Ty— To)/ (T, — To) —k(a/k,, + 1/he). - (24)

Defining dimensionless variables and parameters by
equations (2) and Biot number, Bi, as

Bi = hy X, /k. (25)
Equations (22a—¢e) become:
U U
o 0gx< 0 (26a)
ét 0x*?
cU
¢ — Bi[U(0,7)~1] (26b)
Xl =0
Ulx;,1)=0 (26¢)
dx, ou Bi
sk AU il it 6d
dz 8<8x x:x,+1+3i> (26d)
x4(0) = 0. (26€)

Transformation of independent variables

No exact solution exists for this system. Define
6 = x/x,{(1). To facilitate the perturbation approach,
the independent variables 7 and x are changed to x,(t)
and 8, respectively. Hence U = U[8, x ()] and equa-
tions {26a—€) become:

_oU cU\(oU Bix, otU
el0—-—Xy— N=7 ==
06 x,; )\ @0 |52, 1+Bi a5
0gd<1 (27a)
oU
- = Bix [U(0,x,)—1] 27b)
00 {50
U(l,x;)=0 (27¢)
d 3 Bi \"!
e T g<i‘TU +"<> (27d)
dx, X; @0 5=y 1+Bi
7(x,) = 0, at x;=0. (27¢)

Perturbation solution

The asymptotic expansion of U(J, x,) in the power
series of ¢ is given by equation (15). The first three
terms of temperature distribution as in the following
are obtained by substituting equation (15) into equation
(27a) and by equating the coefficients of the same
powers of ¢

o _y 28
08t (28)

P2U,  [.8U, Uy [éU, Bix
S ={0——x;— || = / 9
257 < @ ax,>< 3 5=1+I+Bi> ()

PU, [ Uy  0Uy\[oU;
=52 =\% 35 o N\ as
26 26 Tax, )\ a6

U,  aU,\/oU,
O — X7 .
00 xy 00

)
Bix,

+ . (30
s=1 1+Bixf> (30)

+

The boundary conditions needed for the linear equa-
tions of (28), (29), and (30) are obtained from equations
(15), (27b) and (27¢}):

(‘\"L"O‘ .

—%~|M = Bix,[Ug(0,x,)—1]

ou,

o = Bix,U,(0,

% |, = B Ui0xp) 31)
U, .

3 e = Bix; U,(0, x)

Ug(l,x;)=0

Uyl x;) =0

Us(1,x,) = 0.

The solutions of Uy(d,x;), U;(d,x,) and U,(d, x)
from equations (28-30) are:
Bix,
Bi*x#(1—x;)
6(1 + Bi)(1 + Bix,)*
x [(1+ Bix;)(3+ Bix;0)0*
— (34 Bixs)(1+ Bix;0)] (33)

Bi*x3(1—x/)

U()((S, XI) =

(1-9) 32)

U8, x5) =

U0 X0) = 3T+ Biy(1 + Bix,)’
x {(1+ Bix)[10(3+ Bix ;6)6°F,
+3(5+ Bix;6)6*JF, — (1 + Bix ;3
+[3(5+ Bix,)F, —10(3 + Bix )F;]} (34)
where

F, = Bix/ {1+ Bix,)(1+3Bi~2Bix,)
F, = 6(1+2Bi)— 3(1 — Bi) Bix; +(1 + Bi) Bi*x2.

Notice that Uy(8, x,) of equation (32) is the quasi-
steady state solution, which can be obtained from
equations (26a-c) by neglecting the time derivative of
equation (26a).

Position of moving interface
The position of the moving interface is calculated
from equations (27d), (27¢) and (25).

AL o (35)
dx, Bix, N i Sian
1+Bi & 06 |54
Integration of equation (35) from 0 to x yields
o= - | Y (36)
Bix, 4 i r %
o 1+Bi Sy 00 |5=4

Letting
eT = To+eT, +e2T, +....

Equations (32-34) and (36) give

o LEB[ LB .
o=~ |t g mi-x) (37)
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—1-Bi [ N x5 3+3Bi+ Bi? Table 1. (Continued)
= . Xy . N ~2
3Bi (1+ Bi)(1+ Bixy) (1+ Bi) % o . N
In(1+ Bix
x ln(l—xf)+—l—3(.—(rmé—)] (38) Bi=05
s 000 00000 00000 00000
* x2{10(1 + Bi)(3+ 3Bix ;+ Bi*x3)?~H 0-05 03116 0-003816 —1909x10~%
T =J HE L ) ]dxf 39 010 06482 001557 ~1400x 10°*
o 0(=x,)(1+Bix,) 015 10127 003579 —4335x 1074
where 020 1-4083 006515 —9422x 1074
025 1-8391 0-1045 —0-001685
H = 3(5+ 5Bix,;+ Bi*x})F; +5(3 + 3Bix, + Bi?x}HF,. 0-30 2:3101 0-1548 —0:002663
. . 0-35 2-8270 02175 —0-003859
Here F; and F, are given in equation (34). 0-40 3-3974 0-2941 —0-005237
Notice that e7 = 1, is the quasi-steady state solution. 0'4(5) 40;2; giggg —gﬁgg‘g
T bl . . 05 4.7 o — )
Bg el g;)ves the values of 1,, 1, and 1, for different 055 5537 06322 — 0009839
iot number. 0-60 6-447 0-7935 —0-01119
0-65 7-498 0-9891 -001218
0-70 8736 1-2293 —001253
S 075 10-227 15299 —~001185
Table 1. 1o, 7, and 7, for planar solidification with a 0-80 12085 19177 — 0009447
warm liquid flowing over a chilled flat plate 085 14-524 24426 — 0004044
0-90 18-023 32169 0007185
Xs To (31 T2 095 24-112 4:5995 003325
Bi=01 0-00 0-0000 B 7)-56%0 00000
000 00000 0000 0:0000 005 01052 0002504 3554 x 103
—6 —3554x 10
005 56565 001418 ~4051x 10 010 02214 001007 3421 X 10-4
-5 —2441x 10
010 11-649 0-05857 —~3-146 x 10 . " -4
—a 015 0-3501 0-02283 —7112x 10
015 18015 01363 ~1029x 10 020 04926 004106 001461
—4 -
020 24-800 02512 ~2361x10 025 0-6507 006510 0002482
-4 -
025 32:060 0-4076 —4453x10 0-30 08267 009547 0003737
_4 -
030 39-858 06110 ~7-409 x 10 , , e _
035 1-0231 0-1328 —0:005175
035 48275 08679 ~0001128 , , i
0-40 1-2433 0-1780 ~ 0006730
0-40 57-410 11865 -0-001610 . ’
0-45 14913 0-2321 —0008324
045 67-388 15772 -0002178 y . .
0-50 17726 0-2966 —0-009866
0-50 78-371 20534 ~0002819 , , , _
0-55 20940 03736 —001124
055 90-569 26324 ~0:003506 g _ , ,
0-60 2-4652 0-4657 —001230
0-60 104-27 3-3382 -0-004197 . .
065 2-8993 0-5767 —0:01287
065 119-80 42039 — 0004823 _ , _ ,
0-70 34159 07123 —001267
070 137-98 52786 0005277 !
075 40452 0-8812 —001129
075 159-49 66378 ~-0-005382 . . !
0-80 4-8378 1-0932 —0-008088
0-80 18594 84085 ~0:004833 . . : .
0-85 5-8885 1-3910 —0001812
0-85 22020 10-829 ~0-003047 . ) . )
0-90 7-4103 1-8215 001027
0-90 268-71 14:432 0001304 095 10083 2-5880 003692
095 352:03 20923 001248
60
—-—=-—Measured steady-state value "
(e]
50~ Second order perturbation
E
?9 O Experimental results
- 40 &)
X
]
2 30
g €=0-234
= Bi=1-34
§ 20
5
1
@
T
0 °L114;|1|xl [ R N B A | 1 L4 1l

10 10°

Time from start of ice growth, 7,

Fi1G. 2. Comparison of experimental result [8] with second-order perturbation

solution.
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FiG. 3. Convergence of perturbation solution, Bi = 0-1.
01 = to/e; 1 —1 = (1y +e1,)/8; 2—1 = (10 + 67, +&21,)/e.

frozen - layer thickness,

Normalized

0-0 ] 1 J
0 10 20 30 40

Normalized freezing time, T

FiG. 4. Convergence of perturbation solution, Bi = 0-5.
0—17 = 1o/e; 1 —1 = (1o +£1,)/e; 2—1 = (1o + 61, +£77,)/e.

o

X

o] Q
[} @®

frozen-layer thickness,
o
»

Normalized

00 | i ]
o] 10 20 30 40

Normalized freezing time, T

FiG. 5. Convergence of perturbation solution, Bi = 1-0.
01 =10/e; 1 —1 = (rg+e1y)/e; 2—1 = (10 +&7, +£21,)/e.
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Comparison of the perturbation solution with the
experimental results of Siegel and Savino [8] is illus-
trated in Fig. 2. Since ¢ = 0-234 is rather small, good
agreement is expected. Figures 3--5 show the con-
vergence of the perturbation solution. For the values
of the Biot number used the zero-order approximation
is good for s < 0-1 and first-order approximation is
good for & < 1. Better convergence is obtained for
small Biot number.

DISCUSSION AND CONCLUSIONS

Perturbation solutions are obtained for moving-
boundary problems with plane coordinate. Two special
transformations of the independent variables are used.
The first transformation is Landau’s transformation to
immobilize the boundary condition. Then the time
variable 7 is replaced by the moving interface x (1),
provided x (1) is a monotonic function of . A regular
parameter perturbation technique is used in a straight-
forward manner. For freezing of a saturated liquid on
a wall of constant temperature, the exact solution is
identical with the perturbation solution.

This report also formally proves that the quasi-steady
state solution is the zero-order approximate solution
for the problems considered.
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